skip to main content


Search for: All records

Creators/Authors contains: "Pritchard, Hamish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Surface meltwater is becoming increasingly widespread on Antarctic ice shelves. It is stored within surface ponds and streams, or within firn pore spaces, which may saturate to form slush. Slush can reduce firn air content, increasing an ice-shelf's vulnerability to break-up. To date, no study has mapped the changing extent of slush across ice shelves. Here, we use Google Earth Engine and Landsat 8 images from six ice shelves to generate training classes using a k -means clustering algorithm, which are used to train a random forest classifier to identify both slush and ponded water. Validation using expert elicitation gives accuracies of 84% and 82% for the ponded water and slush classes, respectively. Errors result from subjectivity in identifying the ponded water/slush boundary, and from inclusion of cloud and shadows. We apply our classifier to the Roi Baudouin Ice Shelf for the entire 2013–20 Landsat 8 record. On average, 64% of all surface meltwater is classified as slush and 36% as ponded water. Total meltwater areal extent is greatest between late January and mid-February. This highlights the importance of mapping slush when studying surface meltwater on ice shelves. Future research will apply the classifier across all Antarctic ice shelves. 
    more » « less
  2. null (Ed.)
    Abstract. Surface meltwater on ice shelves can exist as slush, it can pond in lakes orcrevasses, or it can flow in surface streams and rivers. The collapse of theLarsen B Ice Shelf in 2002 has been attributed to the sudden drainage of∼3000 surface lakes and has highlighted the potential forsurface water to cause ice-shelf instability. Surface meltwater systems havebeen identified across numerous Antarctic ice shelves, although the extentto which these systems impact ice-shelf instability is poorly constrained.To better understand the role of surface meltwater systems on ice shelves,it is important to track their seasonal development, monitoring thefluctuations in surface water volume and the transfer of water acrossice-shelf surfaces. Here, we use Landsat 8 and Sentinel-2 imagery to tracksurface meltwater across the Nivlisen Ice Shelf in the 2016–2017 meltseason. We develop the Fully Automated Supraglacial-Water Tracking algorithmfor Ice Shelves (FASTISh) and use it to identify and track the developmentof 1598 water bodies, which we classify as either circular or linear. Thetotal volume of surface meltwater peaks on 26 January 2017 at 5.5×107 m3. At this time, 63 % of the total volume is held withintwo linear surface meltwater systems, which are up to 27 km long, areorientated along the ice shelf's north–south axis, and follow the surfaceslope. Over the course of the melt season, they appear to migrate away fromthe grounding line, while growing in size and enveloping smaller waterbodies. This suggests there is large-scale lateral water transfer throughthe surface meltwater system and the firn pack towards the ice-shelf frontduring the summer. 
    more » « less
  3. Abstract The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation – GEBCO Seabed 2030 Project supporting the goal of mapping the world’s oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50°S. 
    more » « less
  4. Abstract. One of the key components of this research has been the mapping of Antarctic bed topography and ice thickness parameters that are crucial for modelling ice flow and hence for predicting future ice loss andthe ensuing sea level rise. Supported by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action Group aims not only to produce newgridded maps of ice thickness and bed topography for the internationalscientific community, but also to standardize and make available all thegeophysical survey data points used in producing the Bedmap griddedproducts. Here, we document the survey data used in the latest iteration,Bedmap3, incorporating and adding to all of the datasets previously used forBedmap1 and Bedmap2, including ice bed, surface and thickness point data from all Antarctic geophysical campaigns since the 1950s. More specifically,we describe the processes used to standardize and make these and futuresurveys and gridded datasets accessible under the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles. With the goals of making the gridding process reproducible and allowing scientists to re-use the data freely for their own analysis, we introduce the new SCAR Bedmap Data Portal(https://bedmap.scar.org, last access: 1 March 2023) created to provideunprecedented open access to these important datasets through a web-map interface. We believe that this data release will be a valuable asset to Antarctic research and will greatly extend the life cycle of the data heldwithin it. Data are available from the UK Polar Data Centre: https://data.bas.ac.uk (last access: 5 May 2023​​​​​​​). See the Data availability section for the complete list of datasets. 
    more » « less